# Complexation of Synthetic Bilayers with Water-Soluble Polymers

# Toyoki Kunitake and Shinji Yamada

Department of Organic Synthesis, Faculty of Engineering, Kyushu University, Fukuoka, 812, Japan

The lipid bilayer of the biomembrane can be reconstructed from biolipids and their derivatives, and numerous investigations have been carried out using these semi-artificial membranes (TIEN, 1974). Recently, we found that the bilayer structure similar to that of biomembranes is readily formed in aqueous dispersions of ammonium salts with two long alkyl chains (KUNITAKE et al. 1977a; KUNITAKE and OKAHATA, 1977a, 1977b). It is shown more recently that the hydrophilic group may be anionic (KUNITAKE and OKAHATA, 1978), nonionic or zwitterionic(KUNITAKE et al., 1978). These bilayers aggregate further to form lamellae or closed vesicles, according to the electron microscopic observation. Some physicochemical characteristics of these stable aggregates are analogous to those of the biolipid bilayer. Most notably, the synthetic bilayer undergoes a transition between the solid and liquid crystalline phases and can incorporate appreciable amounts of cholesterol.

The biomembrane is basically composed of the lipid bilayer and protein molecules. In this respect, it should be extremely interesting to study complexation of the synthetic bilayers with synthetic polymers. In this communication, we report the influence of some water-soluble polymers on the aggregate structure of dialkyldimethylammonium salts.

> $CH_3(CH_2)_{n-1} \rightarrow CH_3 Br^- n = 12, 18$  $CH_3(CH_2)_{n-1} \rightarrow CH_3 CH_3$

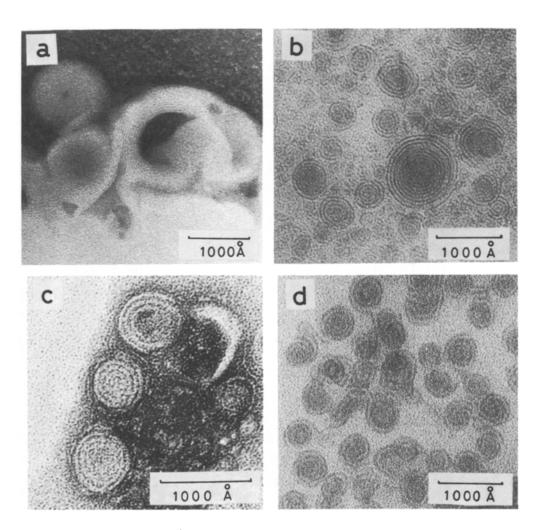
#### MATERIALS AND METHODS

Dimethyldioctadecylammonium bromide(2C<sub>18</sub>N<sup>+</sup>2C<sub>1</sub>Br<sup>-</sup>) mp 90

Contribution No. 494 from Department of Organic Synthesis.

- 93°C and dimethyldidodecylammonium bromide( $2C_{12}N^+2C_{1}Br^-$ ) mp 55 - 56°C were prepared by successive alkylation of dimethylamine. Homopolymers are commercially available. The polyethylenimine derivatives were prepared by us previously. Acrylamide was polymerized under several conditions either with azobisisobutyronitrile or with potassium persulfate, and the resulting polymers were subjected to alkaline hydrolysis at 100°C. The copolymers of varying compositions or of varying molecular weight were thus obtained.

The ammonium salts were dispersed in water by sonication (Branson sonifier 185) for 15 min to give clear to slightly turbid solutions (20 mM ammonium). Aqueous solutions of the polymers were added and the mixture was sonicated for another 15 min. One ml of 2 % aqueous solution of uranyl acetate was added to 1 ml of the above solution, and the mixture was sonicated for 15 sec and kept for 30 min in an ice bath. This solution was placed on a carbon grid for electron microscopic observation with a Hitachi H-500 instrument.


# RESULTS AND DISCUSSION

As the first step it was studied how various water-soluble polymers affect the aggregate structure of 2C12N+2C1Br and  $2C_{18}N+2C_{1}Br^{-}$ . The didodecyl compound usually yields more vesicles than lamellae. Addition of sodium polyacrylate (20 mole% for the ammonium salt) causes partial destruction of the vesicle structure of 2C12N+2C1Br-. No structure could be found when 80 mole% of the polymer was added. Other anionic homopolymers such as polyvinylsulfonate and poly-L-glutamate showed similar Equimolar amounts (in unit moles) of positively-charged effects. alkylpolyethylenimines completely destroyed the bilayer structure. Among the uncharged polymers, polyacrylamide and polyvinylpyrrolidone did not produce detectable morphological changes. In contrast, no structure was observed when 20 mole% of poly(vinyl alcohol) was added.

The effect of these polymers was studied also for the aqueous aggregate of  $2C_{18}N^+2C_{1}Br^-$ . However, morphological changes were difficult to detect in the case of the lamella, and further studies were performed only for  $2C_{12}N^+2C_{1}Br^-$ .

Polyanions and the ammonium salt readily form polyion complexes and precipitates are formed from water. The influence of the polyanion becomes moderate as the charge density along the polymer chain decreases. Figure 1 illustrates the morphological

36



- - c:  $2C_{12}N^+2C_1Br^-(10 \text{ mM}) + M-22(20 \text{ mole} \% \text{ in the acrylate unit})$ .

  - ×240,000
    d: 2C12N<sup>+</sup>2C1Br<sup>-</sup>(10 mM) + M-13(20 mole% in the acrylate unit).
    ×170,000

| Complexes        |
|------------------|
| Polymer-Ammonium |
| of               |
| Morphology       |

TABLE 1

| copolymerprior to<br>sonicationafter<br>no. of layersvesicle,<br>diameter(A)separation<br>bilayers(A)L-11turbidturbid $3 - 5^b$ $100 - 120$ L-19"" $3 - 5^b$ $100 - 1000$ ca. 80L-24"" $4 - 5$ $1500$ ca. 80M-13turbidturbid $2 - 3$ $600$ ca. 80M-13turbid $2 - 3$ $600$ ca. 80M-13turbid $2 - 3$ $600$ ca. 80M-14"" $3 - 5^5$ $500 - 1000$ $70$ H-14"" $3 - 5$ $3 - 50$ $1000$ $70 - 80$ H-27""" $3 - 5$ $1000$ $70 - 80$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Prior to<br>sonicationafter<br>in vesiclesvesicle<br>diameter(A)turbidturbidturbidsericationturbidturbidturbidserication""3 - 5 <sup>b</sup> 600 - 1000""4 - 51500""2 - 3600""ca.5500 - 1000"""2 - 3600"""2 - 3600"""1100""3 - 51000""3 - 51000"""3 - 51000""""1200 - 1700olecular weight of the unhydrolyzed polyacrylamide: L, 600;1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pymerprior toafterno. of layers vesiclesonicationsonicationin vesicles diameter(A)turbidturbidturbid3 - 5""3 - 5600 - 1000""4 - 51500""4 - 51000"""5 - 3turbidturbidturbid2 - 3600 - 1100"""2 - 3600 - 1100"""3 - 51000"""3 - 51000precipitationturbid2 - 3300 - 500""""1000""""1000""""1000"""""olecular weight of the unhydrolyzed polyacrylamide: L, 6000;200000. The number indicates the content of the acrylate u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ល          | aqueous mixture<br>of polymer and 2C <sub>12</sub> N <sup>+</sup> 2C <sub>1</sub> Br <sup>-</sup> | ixture<br>2C <sub>12</sub> N+2C <sub>1</sub> Br <sup>-</sup> | ele                          | electron micrograph | raph                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------|---------------------|------------------------------|
| turbid       turbid       3 - 5 <sup>b</sup> 1000       ca.         "       3 - 5       600 - 1000       ca.         "       "       4 - 5       1500       ca.         turbid       turbid       2 - 3       600       1000       ca.         turbid       turbid       2 - 3       600       ca.       ca.         "       "       a5       500 - 1000       ca.         "       "       ca.5       500 - 1000       ca.         "       "       ca.5       500 - 1100       ca.         "       "       multi       600 - 1100       ca.         "       "       "       300 - 500       80 -         "       "       3 - 5       1000       70 -         "       "       "       multi       1200 - 1700       70 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | turbid       100 -         "       3 - 5       600 - 1000       ca.         "       3 - 5       600 - 1000       ca.         "       "       4 - 5       1500       ca.         turbid       turbid       2 - 3       600       ca.         turbid       turbid       2 - 3       600       ca.         "       "       ca.5       500 - 1000       ca.         "       "       ca.5       500 - 1000       ca.         "       "       ca.5       500 - 1000       ca.         "       "       multi       600 - 1100       ca.         "       "       multi       600 - 1100       ca.         "       "       "       3 - 5       1000       70 -         "       "       "       3 - 5       1000       70 -         "       "       "       multi       1200 - 1700       70 -         olecular weight of the unhydrolyzed polyacrylamide: L, 6000; M, 5000       70 -       70 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | turbid       turbid       3 - 5 <sup>b</sup> 1000 - 1000       ca.         "       3 - 5       600 - 1000       ca.         "       "       4 - 5       1500       ca.         turbid       turbid       2 - 3       600       ca.         turbid       turbid       2 - 3       600       ca.         "       "       "       a.5       500 - 1000       ca.         "       "       ca.5       500 - 1000       ca.         "       "       ca.5       500 - 1000       ca.         "       "       multi       600 - 1100       ca.         "       "       multi       600 - 1100       70 - 1000         "       "       3 - 5       1000       70 - 1000         "       "       3 - 5       1000       70 - 1700         "       "       "       3 - 5       1000       70 - 1700         olecular weight of the unhydrolyzed polyacrylamide: L, 6000; M, 5000       20000.       70 - 1700       70 - 1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | соротулієт |                                                                                                   | after<br>sonication                                          | no. of layers<br>in vesicles |                     | separation.of<br>bilayers(A) |
| " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <pre>""""""""""""""""""""""""""""""""""""</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L-11       | turbid                                                                                            | turbid                                                       | 11                           |                     | 100 - 120                    |
| " turbid turbid 2 - 3 600 turbid turbid 2 - 3 600 " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <pre>" " " 4 - 5 1500 ca.<br/>turbid turbid 2 - 3 600<br/>" " " ca.5 500 - 1000<br/>" " " " multi 600 - 1100<br/>" " " 3 - 5 1000 70 -<br/>" " " 3 - 5 1000 70 -<br/>" " " multi 1200 - 1700</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <pre>" " " " 4 - 5 1500 ca." turbid turbid 2 - 3 600 " " " ca.5 500 - 1000 " " " " multi 600 - 1100 " " " 3 - 5 1000 70 - " " " " 1000 70 - " " " " 1200 - 1700</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L-19       | =                                                                                                 | =                                                            | I                            | 600 - 1000          | .ca                          |
| turbid       turbid       2 - 3       600         "       "       ca.5       500 - 1000         "       "       multi       600 - 1100         "       "       multi       600 - 1100         "       "       300 - 500       80 -         "       "       3 - 5       1000       70 -         "       "       "       multi       1200 - 1700       70 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>turbid turbid 2-3 600 " " " ca.5 500-1000 " " " multi 600-1100 precipitation turbid 2-3 300-500 80- " " 3-5 1000 70- " " " 1200-1700</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | turbid       turbid       2 - 3       600         "       "       ca.5       500 - 1000         "       "       multi       600 - 1100         "       "       "       00 - 1100         precipitation       turbid       2 - 3       300 - 500       80 -         "       "       3 - 5       1000       70 -         "       "       3 - 5       1000       70 -         olecular weight of the unhydrolyzed polyacrylamide: L, 6000; M, 5000       20000. The number indicates the content of the acrylate unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L-24       | Ξ                                                                                                 | =                                                            |                              | 1500                |                              |
| "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "    " | " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     " | M-13       | turbid                                                                                            | turbiđ                                                       | 2 I 3                        | 600                 |                              |
| "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "    " | "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "    " | <pre>" " " " " " " " " " " " " " " " " " "</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M-22       | =                                                                                                 | =                                                            | ca.5                         | 500 - 1000          | 70                           |
| precipitation turbid 2-3 300-500 80-<br>" 3-5 1000 70-<br>" " multi 1200-1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | precipitation       turbid       2 - 3       300 - 500       80 -         "       "       3 - 5       1000       70 -         "       "       "       70 -       1700         "       "       "       "       70 -         "       "       "       1200 - 1700       70 -         olecular weight of the unhydrolyzed polyacrylamide: L, 6000; M, 5000       "       5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>precipitation turbid 2 - 3 300 - 500 80 - " 3 - 5 1000 70 - " 3 - 5 1000 70 - " 2000 70 - 1700 plecular weight of the unhydrolyzed polyacrylamide: L, 6000; M, 5000</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M-27       | =                                                                                                 | =                                                            | multi                        | 600 - 1100          | 60                           |
| " 3 - 5 1000 70 -<br>" " multi 1200 - 1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | " 3 - 5 1000 70 -<br>" " multi 1200 - 1700<br>olecular weight of the unhydrolyzed polyacrylamide: L, 6000; M, 50000;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | " 3 - 5 1000 70 -<br>" " multi 1200 - 1700<br>olecular weight of the unhydrolyzed polyacrylamide: L, 6000; M, 50000;<br>200000. The number indicates the content of the acrylate unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Н-8        | precipitation                                                                                     | turbid                                                       | i.                           |                     | 80                           |
| " " multi 1200 - 1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | " multi 1200 - 1700<br>olecular weight of the unhydrolyzed polyacrylamide: L, 6000; M, 50000;<br>200000. The number indicates the content of the acrylate unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H-14       | u                                                                                                 | =                                                            | I                            | 1000                | ١                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н-27       | Ξ                                                                                                 | -                                                            | multi                        | 1200 - 1700         | 60                           |

The vesicle is not completely closed.

38

change of  $2C_{12}N^+2C_1$  vesicles produced by addition of partially hydrolyzed polyacrylamide. The aggregate structure is not detectably altered by acrylamide homopolymer. In the case of the copolymer, the vesicle becomes smaller with decreasing acrylate units (i.e. with increasing total unit of the copolymer), and the bilayers become more separated. Table 1 is a summary of the morphological change. Without addition of the copolymer 2C12N+2C1Br forms multi-walled vesicles and lamellae. The smallest vesicles formed by addition of the least charged copolymers are double or triple-walled, and the bilayer separation is ca. 100 Å. Apparently, the copolymer is present in the hydrophilic phase between the bilayers, with concomitant bilayer separation. The coulombic interaction of the copolymer and the bilayer is not large enough to destroy the vesicle structure. These changes appear not particularly dependent of the molecular weight of the copolymer.

#### SUMMARY

The morphological influence of water-soluble polymers on the aqueous bilayer aggregate (vesicle and/or lamella) of didodecyldimethylammonium bromide was investigated by electron microscopy. Positively charged polymers and uncharged polymers either destroyed the aggregate or was ineffective. On the other hand, the negatively-charged copolymer of acrylamide and acrylate separated the bilayer and produced smaller vesicles.

#### ACKNOWLEDGEMENT

The authors extend sincere appreciation to Prof. M. Takayanagi of Kyushu University for the use of an electron microscope.

# LITERATURE

KUNITAKE, T., and OKAHATA, Y.,: J. Am. Chem. Soc., 99, 3860(1977) KUNITAKE, T., and OKAHATA, Y.,: Chem. Lett., 1977, 1337 KUNITAKE, T., et al.,: Chem. Lett., 1977, 387 KUNITAKE, T., and OKAHATA, Y.,: Bull. Chem. Soc. Jpn.,:51, 1877 (1978) KUNITAKE, T., et al.,: Polymer Preprints, Japan, 27(2), 231(1978) TIEN, H. T.,: Bilayer Lipid Membranes. New York: Marcel Dekker 1974.

Received June 8, 1978.